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COMMUNICATION RECEIVER STUDIES

Abstract

In this report a family of baseband suboptimal commuaication
systems, referred to as "the family of predistorted replica correlation

receivers,' is presented and analyzed.

The resulting receiver structures estimate the reference waveform
directly from the received process; whereas, the well-known matched

filter or correlation receiver uses a stored reference waveform. 1In

this report the Doppler performance of two such structures is investi-
gated, the results indicating that such structures can be relatively
insensitive to Doppler. The characteristic function for the "decision
gtatistic" is computed for the discrete-time systems and numerically
inverted to obtain the cumulative distribution function. Chernoff

bounds are computed to evaluate the behavior of the "tail probabilities."
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Energy-Saving Policy ;

In concert with the national mcve to lmpiement energy-saving policy 1
Colorado State University is operating at daytime temperatures of 65° ’
-

and reducing the level of nighttime lighting. The faculty and student
body have traditionally been pedestrian-and cycle-oriented as
evidenced by the absence of through-traffic on campus. Airline travel

has been reduced to the minimum level consistent with the tasks spelled

out in the contract.
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I Introduction

In this report we investigate the performance of several different
communications systems. The receiver structures for all of these systems
belong to a family which we will call the family of predistorted-replica
correlation receivers. This terminology arises because of the differences
between a ''predistorted-replica correlation receiver' and the well known
correlation receiver (or matched filter). The latter uses a stored
reference signal and currelates this with the received process, whereas
the former derives its "reference waveform" directly from the received
process.

We will begin our discussion by considering the conventional binary
antipodal pulse-amplitude modulation (PAM) system, for which the trans-
mitted signal is assumed to be of the form:

x(t) = ] s(t - kT), (1.1)
k=0 R

where m, € {-1, 1} and s(a) = 0 for all a ¢ [0,T). For coherent
communication, the receiver's task is to estimate the sequence {mk}:=0.

As is well known, for the case that the received process is given vy
r(t) = B x(t) + n(t) (1.2)

where B 1is the channel attenuation constant, and n(t) 1is a white
Gaussian noise process, the optimal receiver is the correlation receiver
shown in Figure 1.1, with S(t) = x(t), sref((t)T)==s((t)T), where

(t)T ¢ t modulo T. The term "optimal" is used here as '"the best that
can be done for any reasonable criterion of goodness without making use

of the source dynamics." The reader is referred to ([1] - [4]) for

a more lucid discussion of these points.




=T t=(k+)T
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Figure 1.1 The correlation receiver




Now, if the channel is such that the signal component, S(t), of
the received process, r(t), can be written as

S(t) =) s (t - kT), 1.3)
oy ™ %4

where sd(a) = 0 for all a ¢ [0,T), it is easily seen that the receiver
of Figure 1.1 retains its optimality with S of ((t)T), for the case

- ) =

that sd(.) is unknown, one can either use sref((t'T) s((t)T) and
suffer the resulting degradation in performance, or resort to a different
receiver structure, thus leadiug us to the so-called family of predistorted

replica correlation receivers.




II Fixed Lag Autocorrelation Receiver

A. Continuous Time
We begin our discussion of predistorted replica correlation receivers
with the Fixed Lag AutoCorrelation (FLAC) receiver. Consider the
receiver structure illustrated in Figure 2.1, which is a continuous-time
version of the system proposed by Farden [5 ]. The output of the cor-
relator, y(t), can be written as
t

y(t) = [ r(t)r(r - T)dt
t=T

t t
= [ S(1)S(t - TMdt + [ S(t)n(r - T)dr
t-T t-T

t t
+ [ S(t - Dn(t)dr + [ n(t)n(r - T)dr. (2.1)
t-T t-T

If the signal component, S(t), of the received process, r(t), can be
written as

S(t) = m[£] Sd((t)T)’

T

where [x] denotes the 'largest integer contained in x," (t)r- t modulo T,
sd(a) =0 for all a { [0,T), and n(t) is Gaussian White Noise (GWN),
we can easily obtain

A t

z2(t) = Ely(t)} = [ m . ™ot

=T [7] [F7]

sd((r)T)sd((r—T)T)dT. (2.3)

The functions (Et)T and [%ﬁ]are illustrated in Figure 2.2 for

Ee{.75, 1. 1.25}. Finally, at t = (k+1)T, we have




Figure 2.1 The continuous time fixed-lag autocorrelation receiver
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A (+1)T 2
z, = E{y(t)}] =m, m s “((1),)d1
K t=(k+1)ka k-1 ka d T
= m.k mk_l CS (0), (2.4)
d
where
N
cSd (y) = g 5,(t) s (t-y)dr. (2.5)

Carefully note that Csd (.) is not a cyclic correlation and that

sd(u) = 0 for all o« ¢ [0,T). This result suggests that if the sequence
{mk}:-o is a differentially encoded version of some information bearing
sequence {bk}:=1’ the FLAC system has some chance of success, at least

for high signal-to-noise ratios. The differential encoding scheme to

be used at the transmitter is the following (for m =1, and k=1,2,3,...).

m'k—l’ if bk =1

m = (2.6a)
M1 if bk = -1,
or conversely,
1, if m n\(-l =1
= .5
bk (2.65b)
-1, if m mk_1 = -]

Now, suppose that the signal component of the received signal has

suffered a Doppler shift, i.e.,

S(t) = m[ﬁ] sd((Et)T). 2.7)
T

The mean of the correlator output (2.3) becomes

t
2 ) = [ moe Wy sq((ET) )8 ((ET-ET))dT. (2.8)
=T [§1 o5
£t

Using the change of variable u = f’;rl , and defining x = T and

z.'"(x) = z_(t), we have
q '3 :




X

2! (x) =-§-

£ m[u] m Sd((u)lT) sd((u-E)IT)du.

x=§ [u-€]
Partitioning the intervai [x-E,x] as:

aé=x—£<ai <aé <...<aI" = X,

] ]
so that [u]= ktn,, [u-£]==k+P1 for all u c[az_l, az) for 2 =1,2,...,L,

where k = [x] we may write:

L a
' T L
2. (x) = ¢ 9.=z=1 e, Met?, | 54((w),T) 84((u-£),T)du.
S
Furthermore, defining a, = ai_l -k - ns b2 = ai -k - n, and
ql =n, - PE, we obtain:
= b,
zp () = ¢ Domn e [ s;(uT)s,((utq -E)T)du.  (2.9)
=1 L L az

It is easily shown that for £ ¢ (1/2, 3/2), we have n € {-2, -1, 0},
and PE ¢ {-3, -2, -1, 0}. Table 2.1 shows all of the parameters
necessary for the computation of (2.9) for any known signal sd(.) and
for any value of & e (1/2, 3/2).
Whereas in the absence of Doppler shift, information was being
sent and received at the rate of ome bit/T seconds, with a Doppler shift,
information is being received at the rate of one bit/% T seconds; hence,
the receiver must observe the correlator output and make a decisibn once
every T/t seconds. Consequently, we will now investigate when the
maxima and minima of (2.9) should occur. Hopefully, the maxima and
minima of (2.9) will occur for the values of x for which the quantity
B, = mzx(bz-al) (2.10)

is maximum with the constraint that q, =1. Applying this criteria with
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the aid of Table 2.1, we find that (1) for 1/2 < £ <1, Bx attains
its maximum value of £ for (x)1 = £, (ii) for ¢ =1, Bx attains its
maximum value of 1 for (x)1 = 0, and (iii) for 1 < £ < 3/2, Bx
attains its maximum value of 2 - £ whenever (x)l e [0, 2¢ - 2].

Using these results, we find that for 1/2 < £ <1 and x =k + &:
2 (x) = —m.k m o f 8,(uD)s,((u + 1 = £)T)du

=tmom _,C, ((-D1D, (2.11)
d

where the last equality follows from (2.5) and the fact that sd(a) =0
for all o ¢ [0, T). Similarly, we find that for 1 < £ < 3/2 and
(x); € [0, £ - 1):

1

(x) =+ m _ I s (uT)s, ((u+1-E)T)du
“‘k ym 3(,‘)1+2_E d d

N -

- ey G, 18- DT 4w gm 2 G ((€-1)T)

(x)1
¢ % ™ k-2 {) s (uT)s;((u + 2 - £)T)du, (2.12)

whereas, for 1 < £ < 3/2 and (x), ¢ [ -1, 2¢ - 2], we obtain:

1
L ?-1 ( (( )

(x) = — s,(uT)s, ((u+2-¢)T)du
£ "k-1 “'k-3(x)1+1_£ d d

-

1
+Em'k-1mk-2CSd l)T)-i'gm.km.k 5 C ((5 2)T)

(%),

T
temomo £-1 s4(uT)s ((u+1-E)T)du. (2.13)
Finally, a worst case analysis of both (2.12) and (2.13) (mk-l mo_s =1,

B M d T My Moy T Mg T M GAD mw KL, L
L T T P T P -1 1in (2.13)) yields

NORS Csd“‘;'lm‘% (€= 12, + ¢, (€ - DD, @214




where we have defined

Pmax = T « max sdz(uT),
uel[0,1)

so that for |b - a] < 1, we have

i Ip- al
b-a
|£sd(uT)sd((u Y)T)du| < “nd A
Now define the gain of the system agzainst Doppler to be G = Izé (x)I/CS(O).
d
From (2.11) with 1/2 < £ <1, x =k + £ and m mk -1 = 1, we have

1
6= lcsd (€€ - 1>T)|/csd<o>. (2.15)

From (2.14), for 1 < £ < 3/2:

1
O} {Icsd((a- D] -(-DP__ - ICSd((E-Z)T)I}

d (2.16)

Suppose for a first approximation that sd(.) has time bandwidth

product TW and that Cs (vy) is given by:
d

c, (0 1 - |y[w, for |y| <%

c () = d (2.17)
d

0 , elsewhere

For this choice of Csd(.), (2.16) becomes, for Pmax = ZCBd(O), ™ > 2,
1

and 1<£i1+?w—

¢ 5 =28 '5(5 -~ LW, (2.18)

whereas (2.15) becomes, for 1 - %% <g<1,

L1-@a-5mw
7 :

Figure 2.3 illustrates equations (2.18) and (2.19) for TW ¢ {2, 5, 10,

G (2.19)

20, 50}.




12 b

5 Figure 2.3 FLAC Doppler Gain, G, vs. Doppler Shift, §
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B. The Discrete Time FLAC System

We will now discuss a discrete time version of the FLAC system.
The carrier signal s(t) will be extended for all t > O via the rela-
tionship s(t) = s((t)T). For definiteness s(t) will be considered
to be a sampled and held version of a pseudorandom noise sequence (PRS)
which assumes the binary values of +l1. Such sequences are easily
generated by simple shift register circuts, and have desirable auto-
correlation characteristics [ 6]. The value of s(t) for
kNT < T < (k +1) NT, k=0, 1, 2,..., will be denoted as 8o where
N and T are positive numbers whose significance will become apparent
momentarily. With this notation, the autocorrelation of s 1is defined

as
- =0, 1i#nK, n=0, +l, +2,...
c, =) (2.20)

£ s, s
i k=0 k ki | K, 1 = nK

where K 1is the period of the PRS, i.e., sk = Sk

The actual value of K is determined by the bit length, BL, of the

for all k > 0,

shift register which is used to generate the PRS: K = ZBL - 1; hence,

a typical PRS might have a period of 3, 7, 15,..., 1023, 2047, 4095, etc.

Figure 2.4 illustrates two typical pseudorandom sequences of period

15 and 31, along with their respective autocorrelation sequences. Note

that, for i ¥ nK, for integral n, Ci = -],
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Construction of the FLAC transmitter is shown schematically in

Figure 2.5,

FT- bs| b, | by ——@-—

m
NT second o Storage
Clock Element
S Seol...15 |S To
| | Il ' 0 @,  Transducer

Figure 2.5 Discrete-time FLAC transmitter

The output a, is seen to be

Gk’mk Sk,k’o, 1’ 2,00.
[f]

where the sequences {bk} and {mk} are the original information
bearing sequence and the resultant encoded sequence, respectively, both
of which were introduced earlier.

At the receiver, the analog input is sampled every T seconds to
produce an input sequence {Rn}. Thus, under Dopplerless conditions

each transmitted bit m s, 1is sampled N times (N will usually be

k
3
taken as an integer), with each sample shifted into a shift register

k

train (Figure 2.6) composed of two individual shift registers, each

of length L. At the Pth bit position of each register the product

P__P _‘
a = a (nT) Rn -p Rn e is calculated, and the receiver output

Yn is taken to be
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Lil P Lil
Y = a = R R _._ (2.21)
n P=0 n P=0 n-P n-L-P
—_—T
{Rn *1 R Rp-1 Ra-2 A Rp-L+2| Ra-L+1

.Q_ao ao
e ! a'
. 02
. a[_- 2 -
d-ql'-' a
—4

—d RioL | Ra-tet |Ra--2 | @ 0 0 |Re-2Le2 Ra-2L+1

0] | 2 L-2 L-1

Figure 2.6 Discrete-time FLAC receiver

In order to obtain an expression for Y in terms of s, note that,

Rn = R(nT) = a(EnT) = m[%] s (EnT) (2.22)
]

Since K > 1 the whole part of En/N may be used in the subscript of

m, and, for the signal being considered, s(&nT) = s En,’ so that (2.22)
=l
may be written as N
R =m 8 (2.23)
n - "gn, ©En
2B 5
By defining . and s, as zero for k < 0, equation (2.21) may

be written as
L-1
Y =] B Em-p)) "E@-R) =CLy s(Em-PIDa(E(n-P-L)D)
KN KN

P=0

(2.24)

with Doppler £, and under noiseless conditions, (recall that ans a(nNT)),




for all n > 0. Equation (2.24) 1is the general form for the receiver
output; for the PRS-type signals being used /2.24) becomes
L-1
Yn = X m m

peo [P

EMm-P)-¢L. ° E(m-P). ° E(m-P)-EL
[ —gaen I ! [ = ]

(2.25)
If the m's in (2.25) are equal for 0 < P < L - 1, it is desirable to
maximize Yn for £ = 1, in which case the shift register length L

should be chosen as L = KN. For if L 1is chosen in this way, the

n-P
N ]

subscripts of & 1in (2.25), for £ =1, become |

[n-P N-
N

and

A typical output sequence is illustrated in Figure 2.7 for K = 15,

N=5,L=KN=75 and £ =1, with the information sequence bi as

indicated thereon. A feeling for the effects of Doppler (for the same
values of K and L) can be obtained from Figure 2.8, a graph of

% Y2L ( the 2L was chosen arbitrarily) versus £, with m assumed
to be +1 for all k. Althcugh any plot of Yn versus £ 1is very
dependent upon the PRS employed, and upon the shift register length L,
some generalizations can be gleaned from Figure 2.8. First, note that
the value of Y2L becomes very erratic and unpredictable for £ out-
side the range of approximately (K - 1)/K to (K + 1)/K, and secondly,
the value of N does not seem to have a drastic effect upon the values
in the graph. Specifically, the larger value of N seems to offer no

improvement in system performance. In fact, suppose N 1is taken to

the limit in

1 L NK-1
Y =3 YD) =% g.o s(E(n-P)T)s(E(n-P~-1L)T)

For convenience, the product NT may be assumed constant at NT = 1,

corresponding to the transmission of one bit of the PRS per second, so

- K] = [—1;2] - K, thus assuming a peak, as can be seen from (2.20).
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that, letting t = nT, there obtains [7 ] K

K
Y'(6)=1in § y@D) = [ s(E(t - 1))s(E(E - 1) - EK)d (2.26)
0

N+ »
which is the counterpart of equation (2.8), with o = +1 for all k. >
If £= (K-1)/K, or & = (K+1)/K, the value of the integral in (2.26) l
is approximately zero, which indicates that the system is usable only
for 1 - 1/K << F << 1 + 1/K, a region which shrinks with increasing
K.

The upshot of the above argument is that performance of the FLAC
receiver with regard to Doppler cannot be dependably improved by
L sampling at a higher rate at the receiver, a result which is to be

expected from the analysis undertaken previously.
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C. Interference Sensitivity: The FLAC System

Suppose there are two signals impinging upon the FLAC receiver,
one of which it is desired to detect, and the other of which is con-
sidered to be interference. Denote by Ed, K,, and Nd the parameters
of the desired signal, and by gu. Ku, and Nu the parameters of the
undesired signal, where these symbols play the same role as their
unsubscripted counterparts in Section II-B. Further, let the desired

signal, as transmitted, be given by

uk=m K sk’-m K s(t) for
L) )
d d
kNdT <t< (k+ l)NdT, k=0,1, 2,..., and let the undesireg signal
be given by
Bk =] Kk Xk =]J K X(t) for
(=] e
K Ku

u
kNuT <t < (k+1) NuT. Then the received sequence {Rn} is given by

R =m s +J X , so that with inter-
R R B
Nde Nd NuKu Nu
ference (2.25) becomes
Lil
Y = m m{. sl - s
n Tty e a-B)] "[ay@-p-1] i @-B)] e @ -P- 1)
KM K" N N4
Lil - -
+ m Jr, 8 Xr Sar e
Lo @-n ] e @-p-w] [e@-p] gL 2)
KNy KN, N, J L N, J
- L. .
Lil
+ m J sr 49 Xr, N
555 g, (- P)] *[egtn-P-1] Tle (0 P)]|
K N N N
d u
Lil L g L y
+ J J Xr, r 7
P=0 Eu(n—P) Eu(n-P-L) Eu(n-P) gu(n-P-L)
K N KN N N
uu uu u L u
- 2.27)
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The first and fourth terms in (2.27) are autocorrelation sums, whereas

the second and fourth terms are crosscorrelations of the two signals s l
and X. It is a rcasonable assumption that the periods Kd and Ku of
8 and X are unequal, and that the crosscorrelation of the two sig- f

nals will be approximately zero. Therefore, the second and third terms

in (2.27) will hereafter be neglected, and the only term which will

constitute interference will be the autocorrelation of x.

Since Ku and K, are of the form ZBL - 1, for integral BL,

|
|
) d
, the relation between Ku and Kd must be either
Ky = L Ku + 42 -1, CuE 02 B ok (2.28)
L RE K - 2+1
t Ky B e, L=2,3, ... (2.29)
Supposing this relation is given by {2.28), ond that L = Kde, a
contribution from the fourth term in (2.27) requires that the subscripts
of X differ by kKu, k = 0, +1, +2, ..., which is satisfied for
k NuKu kNu
E = = = ,k=0,1, 2, ... (2.30)
} " u  N;(K +2-1) N
where the approximation holds whenever lKu >> § - 1., Thus, if Nu, Nd’
N r
} s and % are chosen such that IﬁL = 2, for example, then (2.30) lLecomes
' d

| Eu =0, 2, 4, ..., which is impractical, so that appreciable interference
will not be observed.

If K, and Ku are related by (2.29), the autocorrelation of the

d
interference signal contributes to the output for
k!,NuKu klNu Nu Nu
§ = & If —— 1is chosen as —/— = 2, then
= + ’

u Nd (Kh L 1) Nd lNd ZNd
LN 2
-EJL = 20° > 8, and once again the values of Eu required for appreciable

\ d

interference are impractical.




24 l

From the above discussion it is apparent that, if the bit rates .
NT and the periods K of all transmitters operating within a con- ‘J
tiguous region can be controlled, then the FLAC receiver can be |
"tuned" to a particular transmitter by properly selecting the receiver }

shift register length L, and the sampling period T.




III The Alternating Forward/Reverse Sequence Autocorrelation Receiver

A. Continuous Time
In this section, the Alternating Reverse Sequence AutoCorrelation
(ARSAC) receiver 1is discussed. The ARSAC system, conceived by

Cornett [ 8], assumes the transmitted signal, x(t), is given by

x(t) = m s(t), 3.1)
[;]

(t),

T

T] (T - (t)z,r), and {mk}:-O is a differen-

where t = (t)2T + 2[
tially encoded version of some information sequence {bk};:*l’ as in
(2.6). The functions EE and [E—;—] are illustrated in Figure 3.1
for £ ¢ {.75, 1, 1.25}. Note that the use of t as the argument
for s(.) in the transmitter has the effect of transmitting s(.)
alternately forwards and backwards. Denoting the received process by
r(t), the ARSAC receiver output, y(t), is given by

T
y(t) = I r(t - t)r(t - 2T + t)dr. (3.2)
0

Suppose that the signal component, S(t), of the received process,
r(t) = S(t) + n(t), is given by S(t) = x(t), and that n(t) is GWN.

Defining z(t) = E{y(t)}, we obtain, for t = kT:

T
z(t=KkT) = Mmooy Moo J s((kT-1))s((kT~- 2T+ 1))d1
0
1
=mo_q M) TJ 8((k-u)T)s((k=2+u)T)du 3.3)
0

Suppose that there exists an a, b such that for all a ¢ [a, b) we

have [a] = h, h a constant. Then if h 1is even, we have oT = (o - h)T;

and, if h 1is odd, we have aT = (1+h-a)T. Consequently, we find
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from (3.3) that for k even, (k = u)T = (k = 2 + u)T = uT and for

k odd, (k = u)T=(k -2+ u)T= (1L - u)T, for all u e [0, T). Finally,

we find that (3.3) may be written as

z(t = kT) =m ., o _, C.(0), (3.4)

where T

CS(Y) - J s(1)s(t - y)dr.
0

We note that (3.4) and (2.4) are identical, indicating that the operation
of the FLAC system and the ARSAC system are identical at t = kT,
when there is no Doppler shift.

Now, suppose that the signal component of the received process is

given by
S(t) = m[sg] sd(st). (3.5)
T
Using (3.2), with r(t) = S(t) + n(t), n(t) GWN, and zg(t) = E{y(t)},
we obtain
T
zg(t) = I m[E [t-‘r)] m[E,'[t-ZT+'r)] sd(E(t - T))sd(g(t-2T+T))dT.
0 T T
(3.6)
Making the change of variable u = %%, and defining x = %f- and
zé(x) = zg(t), we obtain
5 13
zé (x) = E Jm[x-u] m[x-2£+u] sd((x-u)T) sd((x-2£+u)T)du.
c

3.7)

Partitioning the interval [0, £] as

=

0-a0<al<az<...<a

L
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such that, with x = k + (x)l, we have [x - u] = k + N, and

[x - 26 +u] = k + Pg for all u ¢ [32-1’ al), we see that (3.7) may

be written as

T 2
T
zé(x) oy 221 mk+n2 m‘k+P2 J sd((x-U)T)sd((x- 2£ +u)T)du, (3.8)
3 -1
where
((x)l-u-nl)T, if k+n2 is even
(x-u)T (3.9a)
(1- (x);+n,+u)T, if k+n, 1is odd;
and

((x)1 - 2£+u-P2)T, if k+P2 is even
(x=2E+u)T (3.9b)
(1- (x)1+2£+P2-u)T, if k+P2 ie odd
Table 3.1 gives all the parameters needed for the computation of (3.8)

and (3.9) for 1/2 < § < 3/2. The maxima and minima of zé (x) should

occur for those values of x for which (x-u)T = (x-2£+u)T in (3.8).
After investigating the possibilities with the aid of (3.9), it is e
found that the maxima and minima will occur when

£ 1/2 <g<1
(x); = <€ -1, 1<g<3/2

0, £=1

Using Table 3.1, for 1/2 < £ <1 and (x), = £, we find

1
s(zi((E-u)T)du, for k even

' - I
zp (x) gmkmkfl < (3.10)

€
/
0
£

[ s2((1-g+u)Tdu, for k odd
0
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Table 3.1 t
Parameter values for the computation of the output of the ARSAC receiver

(a) 1/2 < £ <1 ¥

(x), € {.} f E i
[0, E - 1/2) 1 0 -2
2 -1 -2
3 -1 -1
(e -1/2, 2¢ - 1) 1 -2
2 -1
3 -1 -1
(26 - 1, &) 1 0 -1
2 -1 -1
[E, 1) 1 0 -1
2 0
b
(x); € {.} f ) _P_R'
o, 1/2) 1 0 -2
2 -1 -2
3 -1 -1
[(1/2, 1) 1 =2
2 -1
3 -1 -1




Table 3.1
Parameter values for the computation of the output of the ARSAC receiver

(c) 1 < & < 3/2

o

(x)1 e {.}

al_

0
(x)

[0: £ - 1)

1

[g = l’ 28 - 2)

[2¢ - 2, £ - 1/2)

[E = 1/2’ l)

1
2
3
4
1
2
3
4
1
2
3
1
2
3




L]

Similarly, for 1 < £ < 3/2 and (x)l = f - 1, we obtain
(
£-1

J sg ((§ -1 - u)T)du, for k even

' I
2g () =7 m B3 9

0

-1

j S: ((2 - & +u)T)du, for k odd
9

(3.11)

(&
J sg ((L - £ + u)T)du, for k even
T &1
hE -1 R 5
£
I sj ((£ - u)T)du, for k odd
(&1

Now, defining the gain of the system against Doppler, G, as

G = lzé(x)|/Csd(0),
and

Pmax =T . max s,(uT),
ue[0,1)

we obtain, for 1/2 < g <1, and (x)1 =g,

P

L (¢-1) _max .

G > E + 3 _Cs 0y ° (3.12)
d

whereas, for 1 < § < 3/2, (x)1 = §-1, and m L . T

P
(1-8) _max (3.13)
IO

The lower bounds of (3.12) and (3.13) are illustrated in Figure 3.2 for

1/2 < £ < 3/2 and me/Csd(O) e {1.5, 2}.
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B. The Discrete Time ARSAC Receiver

As before, the carrier signal s(t) will be assumed to be a |
sampled and held version of a PRS of period K, but with this system, .b
the first K bits of the sequence must be transmitted alternately

forwards and backwards. By defining t. as

- - _J; N -
e tp I F RI@K-20-1),

with J = [%] modulo 2K, the carrier signal may be taken as

s(t) = S(E7ETK . which will be shortened to s;7¥ when no confusion
i)

will result. Here, N and T have the same meaning as in the previous |
section, so that one bit of the PRS is transmitted every NT seconds.

A graph of the function EE' versus t can be seen in Figure 3.3, for

£e{.75, 1, 1.25}.
The ARSAC transmitter is illustrated schematically in Figure 3.4.

- b
The transmitter output is oy m(t/T)k S where ay denotes a(t) for

kNT < t < (k + 1)NT, k=0, 1, 2..., and ty denotes [é%].

At the receiver, the input is sampled every T seconds, providing
an input sequence {Rn}, with each sample entered into a shift registar
train composed of two shift registers, each of length L, one of which
shifts to the right, and the other to the left, as is illustrated in {
Figure 3.5.

The receiver output Yn is

Lil P Lil
Y = a = R R
N p=g M p=p n-P n-2L+P+1

With Doppler ¢, Rn = a(g¢nT) = SE;, so that Yn is given by

[+ ] = m
£En (én)
[N] K

L-1

Y ’PZO E(m=-P)), "(E(=-2L+P+1)), SEm-P) *E(n-2L+P+1)

(3.14)
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Equation (3.14) is valid for all n > 0 if it is agreed that mk-sk=0

for k < 0.

Figure 3.6 illustrates a typical output sequence for K =15, N=5,
L =KN=75 and £ = 0.81. Note that the output becomes decorrelated '
between the peaks, which are manifested distinctly above what might be .

termed correlation "noise". This represents another advantage over the *

FLAC system, in that estimates of the information bits may be made
directly from the output amplitude, whereas such estimates must be
made at specific times when using the FLAC receiver.

The positions of the peaks in time, and the relative spacing
hetween them may be determined somewhat heuristically by the following
argument: After operation of the receiver has begun, the first data
sample reaches the (L - 1)st position of the first shift register
after L -1 steps. Thereafter, an entire PRS group of K bits
passes through this position and into the second shift register approxi-
mately every NK/£ steps. Thus, one might expect that a peak will
occur in the output sequence Yn whenever n 1is an integer close to
L-1+KNK/E, k=1, 2, 3,.... It will be shown below that this integer
is actually n = {L -1 + %}, where {x} denotes the smallest integer 2 X.

In order to visualize the effects of Doppler, assume for the

moment that mk = 4+1 for all k and define An as

An-L-1+—k’2—15-n,k-1, 2, 3,.00s
where n is taken as n = {L -1+ KNK/E}. Then -1 < 8n < 0, and the

subscripts of s 1in (3.14) become

Em - P) =£(L-1+£§£-An—?)=kNK+£(L—P)-E(1+An)

and

kNK

£(n - 2L+P+1) = C(L—1+-—£-—An—2L+P+1)=kNK-(E(L-P)+£An).
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Figure 3.6 Typical ARSAC Output




Figure 3.3 indicates that

kNK - x = kNK + x
for all x such that
mN < x < (m+ 1)N, m=20, 1, 2,...,

(equality may hold on the left for m = 0), so that the subscripts in

(3.14) will be equal for P such that

mN < §(L - P) = £(1 + Bn) < (m + 1)N

mN < E(L = P) + EAn < (m + 1)N.
Choosing the tighter upper and lower bounds for E(L - P) begets

mN+£(1+4n) < E(L-P) < (m+1)N - Ebn, -1/2 < An <0

3 and
mN-£8n < E(L = P) < (m+1)N+EQ+5n), -1 < &n < -1/2

whence

L+An-(m+1)%<p<L-1-An-m‘§ , -1/2< pn <0 (3.15)
N N
L-l-An-(m+1)-€<P<L+An-mF. -1<An<=-1/2 (3 .16)

The rationale for the particular choice of n may be interjected here.

For consideration of equations (3.15) and (3.16) indicates that the

greatest possibility oi satisfying these inequalities occurs whenever

An = =-1/2. Since the difference between the maximum and minimum values

: of An must be at least one, the optimum range of &4n 1is -1< sn <0,

as was chosen.

To insure the existence of an integer between the bounds in (3.15)

and (3.16) for every m roquires that the segment width defined by

these bounds be greater than 1, which in turn requires that N > 2¢,.

Thus, if the maximum possible value of £ is denoted as Cmax' it 1is

necessary that N > 2£max for reasonably good operation of the system.
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Note that the larger the value of N, the more integers will lie
inside the segments, with resulting better system performance.
The above discussion indicates that bit misalignments will occur

at the Pth position of the correlator shift registers whenever P

satisfies
mN N
L-l-An-?f_PiL+An-m';, -1/2 < 6n £ 0 (3.17)
“
or
N N
L+An-m—;_<_P iL-l-An-mE, -1 < &An _<_-1/2 (3.18)

for m=1, 2, 3,..., [% (L +8n)}, -1/2 < &n < 0. Th: lengths of the
intervals in (3.17) and (3.18) are given by
0<1+ 2M <1, -1/2 < tn <0

and
0 < -1 -24n < 1, -1 < &6n < -1/2

Hence, at most two integers may lie within the interval defined by (3.17),

so that, for the worst possible case, a total of

2[-%(L+An)] (for - -;— < 4n <0)

bit misalignments may exist in the shift registers.

Peak degradation will occur due to these misalignments only if the

appropriate adjacent bits of s are of opposite polarity, as is shown
in Figure 3.7, an illustration of a small section of the correlator

shift registers.

S, Sy Sk S+l Skt Sk Skt Skt Skt SkaiSue2 Swr2
{ SN ) e YR YT N A T B I B g

£ 1 1-cl-ol-l-0]-0]-0l-0}-v]-v]-vp 0 | i

S, Sk Sk Sk Skt! Skt Skt Sket Skt Skt Skt Swe2

No Degradation Degradation Occurs

Figure 3.7 Bit misalignment causing peak degradation




If degradation does occur, the magnitude of the peak will be lessened by

2 (+1 is subtracted instead of added) for each bit which is misaligned
and of polarity opposite that of an adjacent bit. Letting AK(R)
denote the maximum number of polarity reversals in R bits of a PRS
of period K (with successive groups of K bits transmitted alternately
forwards aud backwards), the maximum amount of degradation AYd which
may occur due to Doppler is (2 bits misaligned per reversal) x (2 sub-
tracted per misaligned bit) x (number reversals), so that

AYd = 4AK({EL/N}) (3.19)
The value {EL/N} is simply the number of PRS bits which 'fit" into
each of the shift registers whenever a peak occurs.

As an example, suppose K = 7, and that the PRS sequence is trans-

mitted as

A " X
1,1, -1, -1,1,1,1,,"1,1,1, -, -1,1, -1, "-1, 1, -1, 1,00, O
So Sl 86 56 S5 . . .

Supposing further that L = NK, and £ = 0.8, then (3.19) is evaluated

as

oY, = 4A7 ({0.8+7}) = 4A7 ({5.6}) = 4A7 (6).

In the sequence so, sl,...,s5 there are 3 polarity reversals, whereas
in the 8g» SS""SI there are only 2 such reversals. Thus A7(6) = 3,

and (3.19) evaluates to AYd =12,

In order to prove the advantages of the ARSAC receiver with regard

to Doppler, let the normalized peak amplitude Y' be defined as

L - AY
y' - ——2
N .

Now, if L 1is proportional to N, i.e., L = BN, then Y' becomes

AY 48 ({EB])
s - R
Y B = B -

gtk = rbienlCh | L
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which tends to B as N tends to infinity, independently of £. Thus,
relative peak degradation due to Doppler (with mk = +1 for all Kk, '
as was assumed earlier) can be made arbitrarily small in the ARSAC
system by increasing the sampling rate at the receiver. i
With the restriction that mk = +1 removed, the above analysis .
may have shortcomings, since the value of Yn’ for n = {L-1+kNK/E}, ‘
may depend not only upon m and LT but also upon LY and
Mo 2 The continuous time analog of this problem was treated in
Section IV-B.
An analytical description of the situation is achieved by con-
sidering the subscripts of m in (3.14), the first of which becomes,
for n as given above,

(C(n-P))K= (kNK+E(L=-P) = E(1+4n)),

Employing the definition of t , this equation becomes

K
(E(n-P))K= [kNK+ a(IIEN- P) - €(1+An)] N [£(L-P)K-N£(1+AQ]

Hence, the subscript under consideration remains constant at k if

0 < EL=P) ;N£(1+An)< 1,

which is satisfied for L-l-An-K% <P<L-1.
Similar treatment for the second subscript of m indicates that
(¢(n- 2L+P+1))K remains constant at k - 1 if
L+An--l(%iP <L-1,
so that, since -1 < An < 0, both inequalities are satisfied for
{L-K%} <P<L-1 (3.20)
For P outside this range the two subscripts become k +1, and k - 2,

respectively. Therefore, under the worst possible conditions, which

correspond to the products mom oy and LY mk- 2 being of
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opposite polarity, and to the exact alignments of all PRS bits in the
Pth position of the shift registers, for 0 <P« {L-Kg} zj, the !

peak amplitude is degraded by

1
f2(1+1), 3> 0 |
#=0 ‘]0, jJ<0 '

-

Consideration of equation (3.20) shows that, if L is such that
L - KN/g < 0, then the degradation AYm will be zero. Thus, L can
be chosen so that L < KN/, which is satisfied for L = [KN/Emax].

If L 1is chosen in this manner, only the degradatior due to bit
misalignments will contribute to peak amplitude reduction.

In the above analysis it has been assumed that the received
sequence {Rn} is composed of signals emanating from a single trans-
mitter, and that no interference is present from other systems in
operation near the receiver. If such is not the case, system operation
may be impaired to the point that the desired signal is totally
undetectable. Consideration of this problem and of methods for achieving

its remedy will be undertaken in the following section.
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C. Interference Sensitivity: The ARSAC System
For convenience, let it be assumed at the outset that the encoded !
message bits are +1 for all time for both the desired and the undesired ‘

signal. Then the transmitted signals are given by k

S—= and x
(t/T)K N (t/T)K N
d’'d u’ u
P
and (3.14) becomes d
Lil
Y = 8§ ——— s )
n o0 (E . (n-P)) (8, (n-2L+P+1))
| P=0 d Kd’Nd d Kd,Nd
L-1
YL SE o) XCG-2L+P+1)
: p=0 ‘5g'" KyoNg B 1 )% N
‘ u’'u
3 L-1
+ s R—
| P=0 (Ed(n - 2L +P + 1))Kd’ Nd (Eu(n - P)K N
u’ u
L-1
+ —————
Lo STy, | EG-ETFe Dy, O
u’'u u’ u \

Again it will be assumed that the second and third sums are negligible,
so that only the first and fourth terms contribute to Yn' No further
} A analysis is required; from the results of SectionIII-B one sees that
the fourth term, which corresponds to the interference, peaks at
n={L-1+k KN,/6. 1
for k=1, 2, 3,.... Furthermore, the maximum possible value of this
term, L, is the same as that for the first, desired term. Hence, the
peak due to the desired signal and the peak due to interference may be {

indistinguishable in amplitude, and since £, and Eu are not in gen-

d

eral controllable, the relative position in time of these two peaks

\ cannot be dependably established.
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Although the above results were deduced with the assumption that
the message bits for each signal were constant at +1, an unreasonable .
assumption, it is apparent that an equivalent situation may occur if
a string of +1's or -1's occurs in the message bit sequence corresponding
to the interference signal. Therefore, it must be concluded that the 3

ARSAC system exhibits poor interference characteristics.
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IV. Noise Performance

In this section we investigate the noise performance for the family
of predistorted replica correlation receivers. We will be concerned
with the computation of the cumulative distribution function (cdf) of

the statistic 2z, given by

1 _T
z N Rl RZ’ (A -1)
where Ri = Si + Ni
T
Ri (ri,l' ri,2’ ey ri,N)’
T
Si = (si,l’ si,2’ o si,N)’
T
Ny = (g 10 By g0 cees By )
ny g ie {1, 2}, 2 e {1, 2, ..., N} is normally distributed with mean
zero and variance oi (we will use the notation n, g ~ N(O, oi)), and
]
2 i
E {ni,2 nj,k} o 61,j ék,l' Si is the (deterministic) signal com

ponent of the received data vector, Ri' Several solutions to similar
problems are available in the engineering literature (e.g. see [9] - [11]);
however, since the results treated there are not applicable to the problem
at hand, they will not be dealt with here.

We begin our analysis by computing the characteristic function

¢z(£), defined by

iEz} (4.2)

¢Z(E) = E {e .
where E{*} denotes statistical expectation. Feller [12] suggests that
if 3 and X, are indepe:ndent random variables with cdf's F1 and
F2, and characteristic functions (ch.f.'s) ¢1 and ¢2, respectively,

then y = X1X, has the ch.f. ¢y given by
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o o«

0,(8) = I 6o (EX)AF) (x) = J 8, (EX)dF, (x). “.3)

-00 -00

Making use of (4.3) and the fact that ¢ (£) = exp{j s, ,E- 1 02 52},
r i,k 2 3
i,k
we find that the ch. f. for the random variable Y = rl,k 1:'2’k is
given by
1 2 2 2 2 2
38 k5 k572 (95 8y (9 8 )6
¢y (€) = exp 5 5
k 1+01 Oy £
2
© 2 2 .2 2
1 J f'(1+°1°25)( S,k 13 Szk°15)}
‘ -— -2 dx
Y ey exp 2 % 2 2 9
21r<J1 * 1 201 1+c:1 02 £
or
1 2 -2 2 2 2
0 j s £E- = (o, s +0;s £
o Gy = 0 1802 o 2 VD gt & 22 PP 2,¥
Yi 1 72 1+ 02 0252
iy 7.2
&.4)
Now, defining
_ T
C1 = 3132’
4.5)
_ 2T 2 T
C2 = 02 Sl Sl + 01 SZSZ’
and noting that our indcpendence assumption implies that
N
¢Nz(€) =7 ¢_(£), we have
k=1 “k
N 1 2
” - 5 EE = 2k
¢ (NE) = (1+02 o? CZ) 2 exp L 202 ’ (4.6)
z 1 72 2 2 52
1 +01 02 £

since ¢Nz(-§) = ¢z(£). Defining the standardized random variable, n, by

n= ——'_'z—s .7




we obtain

: -3 8¢
0,& = @+ 7 exef

B, &
— } %.8)
1+¢

where 8 = o, oz/No 1 B Cl/oloz, and B, = c, /o 02 Unfortunately,

the ch.f. (4.8) is not easily inverted to obtain the denisty function;
however, all of the information about the density function is contained
in (4.8). From (4.8) we can obtain all of the moments, M = E{nk},

using the relationship
k
d’¢_(t)

= (—j)k—“k— . (4.9)
dt t=0

Computationally, a somewhat less tedious approach is to first compute

the cumulants Kk’ using the relationship

(Jt)

log ¢ (t) = Z Ry A= (4.10)

and noting that the moments, u,, and cumulants, Kk’ are formally related

Kk
by [13, p. 318]

K
exp (J K o7 1= 1w or % .11)

Kendall and Stuart {13, p. 69] have tabulated the first ten moments in terms

of the first ten cumulants, which, for Kl =0 and K2 = 1 are

repeated in (4.12)
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= K_ + 15K, + 10K§ + 15

Y6 ~ 76 4 Uy

by = Ky + 21K + 35K,K, + 105K, ;

bg = Ky + 28K, + 56K.K, + 351(2 + 210K, + 280K§ + 105

Mg = Kg + 36K, + 84K K, + 126K K, + 378Ky + 1260KK, !
+ 2801(3 + 1260K, )

Mo =K * 45Ky + 120KK, + 210K.K, + 630K, + 126K§ + 2520K.K, |
+ 1575K; + 2100K K> + 3150K, + 63001(‘;' + 945 .12}

The reader will recall that for a standardized normal random variable,

the only nonzero cumulant is Ké = 1 and the nonzero moments are given
by
29) 1
ué£=%—%—, L =1, 2, 3,.... %.13)
279!

Knowledge of the first few moments of n will enable us to compute
an Edgeworth expansion [14] for the probability density function fn,
from which an approximation to the cdf Fn is easily obtained. We
now proceed in developing an expression for the cumulants Kk' Defining

h(f) = log ¢n(€/3), we have 3 1. 2
N N 1B &7 +58,8
hee) =-Y1oga +36) - 10g1- 30 - 22 .14

1+¢ :

Using standard partial fraction techniques, and noting that

© L enK okt
log(1l +j&) = z (-Jé)k (1) ’ (4.15)
k=1
we obtain
h(e) = § 1407 Gk +38,) + 8, (0", %.16)
k=1

It follows that the cumulants, Kk’ are given by

Al -
kk.(k + 282 ) k=2,4, 6,...
% k| :
B8 ke, k=13, 5, 7,...

with K1=0-




Substituting

o 0N 1N 1 N1
Mo T 10:8TTG + 38y (g + 28,48 +7g F 28y t 2P

+

8
=9I B°(1 + =N+ 38 +ls
1 6

(4 .17) into (4.12) we obtain

SRR . |
438 (A+582)+3

= 5!8185 + -52—' 8183

- 6!66(% +%ﬂ2 + %si) + -(;_—! 84(% + %32) + 15
= 7:3157(1 i+ 28,) + -7:,_3—3155 + %!-8163

+ %.!'86(% +38, %Bi) + %A(% +28,) + 105

9 5 2. 9! 7. N.1
12 2 ) 8B A+ o8y
9! 5 9t 3
+ 3018t uehhB
10, N

10! 2 N 2, 1006 N 1

N, 1

© BIG et 8y v 2m] + g+ 38
4

108" N 1

g G Y 3B) T 94

(4.18)

The Edgeworth expansion is a series representation of a standardized

probability density function in terms of Tchebycheff-Hermite polynomials,

the first term of which is the standard normal density:

V(x) = ‘[2_11_1_82 1

1 2
=X

4.19)

The motivation for considering an Edgeworth expansion rather than the

formally equivalent Gram-Charlier Type A series lies in practical

applications for which only a small number of terms are used [14]. In




- R e TR e

standardized measure, the first few terms of the Edgeworth expansion

are found from [14, p. 229] to be

(3)

£ * 90 - 37 Ky w01+ [y x, NO! 10 .2 (6)

T B (]

1, (5 35 (7) , 280 .3 (9)

" BT K Ty YIT R o T KV ! 620

An added benefit in using expansions such as (4.20) is the ease in

obtaining an approximation to the cdf, F(x), in fact, with

X
= [ y(x"ax',

\ll(X) e .
F(x) = J E(x')ax' =Wy - [3% K3“‘(2)(x)1
1 (3) 10 .2 (5)
+ I VT 6 K Y ()
1., W L35 (6) 280 3 (8)
TR v Ty TIT KKV Ty T KBV (e
& .21)
or, after "simplification,”
F(x) * Wy + b [8,8% - 38,8° + 158,87 G+ 38,) - 676"
4N .1 15.2.6
+x(3BG T8 - ER)
2, 3 5 7N .1 39
+ x“(-8,8 + 68,8° - 458 8" @ + 78,) + 70878")
3, 4N, 1 2.6
+ @ G + 38,) + 5828%)
+x*(-8,8° + 158.8" (¥ + 18,y - 358387
1 18 G+ 28 1
5,126, . 6 7N, 1 14.3.9
+x7E58180) + x (=88] G + 38,) + BB
8 1 .39
+x(-¢ 81811 G%.22)

At this point, it seems worthwhile to interpret the parameters we

have been using. We will assume that the signal energy is the same in




51 |

i

each channel of the correlator, or SISI - Sisz. interpreting the input i
[N

signal energy, Es » as %SISI, we find that B 1is given by: ]
in i

8= 1 , %.23) &
N° Y1+ Y, SNR 4

where we have defined y = 02/02

TR (1 + v)/y, and the input signal-
to-noise ratio as SNRi = Es /oi. We now define a correlation factor,
in
CORR, by
stz
CORR = —— (4.24)
5151

which is easily shown to satisfy:

Finally, we obtain
N * CORR * SNR

i
LR
and (4.25)

B, = NYISNR

2 i’

A suitable performance index for binary antipodal signaling is
2w | 2[CORR| N2, SNR,
p(y, CORR, SNRi,N) = = - = - (4.26)
z v+ (1 + ) SNRi

The above performance index (4.26) is illustrated in Figure 4.1. For

a fixed reference correlation receiver, with y = 0, and reference

T T
» such that Srefsref Sls1

and

signal Sref
T

- Slsref
T ?
515,

our performance index becomes

a
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.01
.001 .01 .1 1 10 100 1000

1000

b ~ 100

.01
.001 .01 .1 1 10 100 1000

(b)

‘ Figure 1.1 The performance index, p, vs. SNRi
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p, (0, CORR, SNR.,N) = 2a|CORR|/N - SNR, . (4.28)

We can now define an efficiency factor, EF, as

p(y, CORR, SNRi,N) vYSNR

1
Py(0, CORR, SNR,, N) /1% Y)SNR,

EF(y, «, SNRi) =

4.29)
The above efficiency factor (4.29) is shown in Figure 4.2. EF(y, a, SNRi)

provides us with a strong indication of the tradeoffs involved in
choosing between a predistorted replica correlation receiver and a fixed-
reference correlation receiver.

With the above interpretations in mind, we return to the Edgeworth
approximation of the cdf given in (4.22). Since Y(x) 1s the well-
tabulated standard normal integral, we need only concern ourselves with

the non-normal component of the cdf, H(x), defined by
H(x) = F(x) - ¥(x). (4.30)

The Edgeworth approximation of (4.30) given by (4.22) is shown in

Figure 4.3 for |x| < 5 and several choices of N, SNR,, vy, and CORR.

i
Only positive values of CORR were used since

H(x) | = -H(~x)| . (4.31)
-CORR CORR
Figure 4.3 suggests that H(x), the non-normal component of the cdf F(x)
is not of large magnitude, and tends to decrease with increasing N.

Consequently, an investigation of the behavior of ¢n(£) for large N

would seem appropriate.




\ Figure 4.2 The efficiency factor, EF, vs. SNR

i

T L T TN




(a) N = 100, SNRi = .1, y=1

Figure 4.3 Edgeworth approximation of H(x)
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(b) N = 100, SNR1=1,Y'1
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(d) N = 100, SNR, = .1, y = .1
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(e) N = 100, SNR
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(f) N = 100, SNRi =10, vy = .1




(g) N = 1000, SNR, = .
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(k) N = 1000, SNRi =1, vy =.1
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From (4.8), we have

N . 3.3 1 2.2
2 2"5 -3813 £ - E BZB £
¢“C)=(1+B£ )° exp 57 3 (4.32)
1+8°¢
where
8% = L > 0
N(L + Y,SNR,) N~ °
1 i
A 33 ] CORR - SNRi .
1 N1/2/7-(1 +y SNR )3/2 N+ »
1l i
and
o g2 it
2 1+ Yl SNRi
N
Noting that (1 + 8252) 2 N+ @ exp {-l 2 }, we find that
1.2 2 (1 + v, SNR,)
L 17
lim ¢n(€) =e? , i.e., n 1is approximately normal for large N. With
N

this important result, we note that the ordering of the bracketed terms
in the Edgeworth expansion (4.20) and (4.21) are arranged such that

-1/2, as

successive terms decrease as increasing integ.al powers of N
shown in {[14]). Even with these important remarks, we still have no
feel for the error in our approximation. (In fact, the Edgeworth series
does not always converge [14].) Consequently, we will now consider a
method for the numerical computation of H(x) directly from tnre
characteristic function.

A well-known result from probability theory is that if a and b

are continuity points of a cdf F(.) having ch.f. $(.), then

1 o-jra _ -itb
F(b) - F(a) = lim LT I It o (t)de. “.33)
T -T

The similarity between (4.33) and the well-known Fourier integral suggests

that a Fast Fourier Transform (FFT) algorithm might be used to provide
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an efficient numerical computation of (4.33). With x =b and a =0,
we may rewrite (4.33) as
E T jxt -jxt i
e bl jt jt
0 0
(4.34)
' Now, assuming that p(+) 1is absolutely integrable and defining
T
L =e(=t) + ¢(t)
1’1‘ 20 J jt de,
0
we have
L @«
dF(x) _ ol -jxt \
\ T f (x) 77 J e dte, (4.35
and
T
1 2j Im ¢(t)
[ A== - dt
T 2 jt
0
(]
T %)
- = % J % Im | J eJXt f (x)dx]dt
0 -
} " g '
| =%J £(x) [ J s1n %€ gela
-0 0
Noting that
| = -12‘- » x <0
| ,
[ sinxt oo . d o x=0 ,
0 % , x>0
we find that
1
lim IT == - F(O),
T 2
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so that we may write

T

R T <N .
2 T jt ’ :
T 0 |
or . {
-jxt ‘

F(x) = % - lim-% J Im {¢(t)e i _—

T

0
Equation (4.36) can also be found in [13]. If we could remove the 1Im(.)

operation from inside the integr-al, we could easily implement an FFT
algorithm. Following Nuta®l [15 ], we alleviate this problem by using

"The old give and take trick." Choose a(t) such that
T

~jxt
i) F (x) = -12- - lin 2 J In {a(t)e LTS
T
0
and
ii) Q_Q:.L'_;_ESQ € Ll (0, ).
For such an a(.), we have
T -jxt
F(x) =Fa(x)- lim % Im { J (oCt) : a(t))e —dt}. 4.37)
e
_lo 2
In particular, choosing a(t) = e 2 v, we have F (x) = Y(x) and
T
_ ~jxt
Hix) = -lin = Im { I (() - a(ehe” 4, 4 .38)
Too T t
0
Defining
-jxt
M (¢(t ) - a(t ))e m
g(x) = bt | B
m=1 m
we may approximate H(x) as
H(xz) =-%'Im g(xl), (4.39)
2n(2 - 1)

where, for t = (m-1)AT, m=1, 2, ..., M, and x = T

L =1, 2, ..., M, we have
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%1 (o(t ) = a(t)) exp{ 221G = 1) (@ - 1)
m=1 tm "

b
4.40)

g(xz) = At

which is precisely in the form for which the FFT is designed. We now
need only to choose a At and an M = T/At so that the approximation
(4.39) is a good one. First, we note that g(xz) is periodic with

27 2n
period A’ i.e., g(lei-zg) = g(xz). In particular, we have,with
Ax = 2n/T:

M-1

M
8ty myp)r @ = -1

= !
-[ 3 ]y wpe o -1

g (mlx) =
g(x m=20,1, 2, ... [E]
m+1)’ 1 1 4 1 1 2’
(4.41)
so that we have obtained an approximation of H(x) for [x[ j_%Ax.
The approximation of (4.39) and (4.40) involves errors due to
truncating the integration limit as well as a sampling error due to
approximating the truncated integral with a Riemann sum. Standard
numerical analysis techaniques could, of course, be applied to
approximate and/or bound these errors. Alternatively, in view of the
fact that we may rewrite (4.38) as
-jxt

H(x) = oo J () - a(t))e 7, (4.42)

an t

—x
we find that we are simply approximating a Fourier integral with the
FFT. Consequently, the results of Coolcy, Lewis, and Weleh [16], for
example, can be exploited to provide appropriate error bounds.

Following [1¢], and defining:

d(t) = M

t ’

(4.43)

d (t) =) d(t +kT),
P k-—m
and
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H (x) =) H(x + kX),
P ..

it is easily shown that

T
s e _j2n(s - Dt
H(xl) 5 I dp(t) exp{ T }dt,
and 9
X
d(t ) = -j J H (e (m = Dubey,,
0
Furthermore,
M M
{dp(tm)}m=1 and {Hp(xm)}’v:1 are related by:
M
_ iat -j2n(m-1)(% - 1)
Ho (k) = 57 L d (e Yexpt = 1,
m=1
and

M
i2n(m - 1) (L - 1
bp(tm) B -ijzZ1HP(xz)exP{J 2o ;)( Ly,

As noted previously, we are making the approximation

0 M
H(x,) = H(x)) = %ﬁ% ) d(t,)exp
m=1

We will bound the error in (4.46) via the inequality:

-j2r(m - 1)(2 = 1)
{ v }.

(4.43)

(4.44)

(4.45)

(4.46)

xR | < [aG) =1 |+ 1B 6g) - Rl @47

Noting that

M
. At .
l“p(xg)"“(xz)l-i'f; mzl ldp(tm) - ai )|,

(4.48)

, - - 4/ i
appropriate bounds for lH(xz) Hp(xz)l and Idp(tm) d\tm)l will be

found and used in (4.47) . The well-known Markcv inequality states that

P[|n] zelii{-l-“-\,vu-

€

(4.49)
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Note that for v an even positive irteger the bound in (4.49)
involves the vth moment of n, and that the bound decreases more
rapidly with increasing € for larger v. Since M0 is available

from (4.18), the following bound (4.50) may be computed.
10
P[In] > €] 2 ujyle (4.50)

Using (4.50) and an inequality given in (17, p. 39], we find that

" 1 2
1 o=
| <3S +2e72°, (4.51)
3
for all x such that |x| > e.
2k -1

Noting that for all x such that | x| _<_22(- we have ix_'l_-kXIZ_ 2 X,

and making use of (4.43) &rd (4.51) we find that

) -0 (0] <] JHG& - k0 [+[HEx + kK|
P k=1

(for X>2)
-10 1 8 1 8

}+i'e +t3x ©

< (&0 g0

® 2k-1 =10, < 1
+ 2uy, Y« 5 X) T4l ) exp{-3

k=3 k=3

2k-1..2
=%t

The series are easily bounded as
o 2k-1 -10 1 10 1,3,,-10
k£3( X <% J x dx = £GX) T,

3
ZX
and . rm _lxz
) exp{---l(ZR-1 x)2) i—l: e 2 dx
) 22 X |
k=3
3x
2
9.2
.2 8
- 2




We have:

1o -1 00| < 20 (GO 0+ EG0 T

l 2 9 (2
-= X -= X
8 4 (l+—1—)e 8

R IS (4.52)

+ %(-[e

which would be the only bound necessary if {dp(tm) }:=1’ the

"pre-aliased" version [16] of {d(tm) }:=1 were available. Similarly,

2k -1

noting that for all t such that It‘ < T/2, we have ‘tikTi > 2

T,

from (4.43) we obtain

A

=1 2k = 1 o
2

Now, since |é(t)| and |a(t)| are strictly decreasing with lt], we

have
| o o@D |+ ladE )|
|dp(t)'d(t)| <2 Z _- k- 1
=] T
2
1 1 Lk 1,3 1.3
<2 oD [+ gD [ +3leGD I +31aGD D
+ 2 J loGu)] du + 2 J aly du. (4.53)
T u T u
3 3
2t 2t

Recall that for the problem at hand, ¢(t) and a(t) are given by:

. 33 1, 2.2
—JBIB t - 2,:23 t
2

ace) = (1 + 22%)? exp (4.54)

1+82t

v le(t-kT) |+ |a(t-KT) | +[¢(t+kT) |+ |a(e +kD)]




We have:

w o N 1 7 "2
| e L
1edk dt < J u l(1+u ) 2 exrT 2 2 1u
t l1+u
8T
2 w0
SN B -3
< ex[<——"5—5— u (1 +u) du
- C 2.2
Le3 T BT
f 2 )
(for N > 2) 1, 2.2 N
=3, B8°T -
2% L1 -1 72
= exf| 7 5 —2-J 22(x-l) x  dx
1+8 T 1+8°T
fl 2.1 N
| ex; --2-828 . L J x--?: dx
- 2 2 2.2
» 1+3 T 28T l+82T2
1 2,2
{-'2'828 T}
exp\—————
2.2
- 1+R T . (4.55)
)
o -2)8212 (1 +8%1%)
A
* bl(T)’
} and = (m _ltz 1 T2
Iagtgl 1 2 1 A .
. J . de < o | e dt _<_T2 e = b, (T). (4.56)
T T

' Combining (4.47), (4.48), and (4.52) through (4.56), we finally obtain:

Gy - ) | < 20 1600+ LG0T

e, 1oy o 19,3 i
oG D+ la@D)] +§I¢(-?_-T)I+5}a(

Mot 3 3
+ 1:,1,[131(2T) + bZ(ZL)].

3.0
i

(4 57)




Note that X = 2wM/T, and MAt = T. For any range yielding suitably

small errors, we have:

7,3 ,,-10 1.,.-10 .
6(2 x) << (zx) l‘
9 2 1 .2 1
-1-+-l—)e-§x <<e§h
3 3X .
1,..3 1
o@D << [oGD
) P )
Sla(fT)l << :.'l(j;T)l
3 1
01(5 I) << |¢(§T)|
3 1
l\ bZ(E T) << {3('2"1')[
P
. Hence, a very good approximation to (4.47) is
1,2
2.2 -=T
' _ » . i R l 10 T -l 4'" M _L l-_ 8
[BGxp) - HGx ) | <20 () + 50 expl-g 5 beozlleGDl+e 7 1.
(4.58)
The approximate bound of (4.58) is shown in Figure 4.4 for
N = 100, CORR = 1, SNRi ¢ {.1, 1, 10}, ve{.1, 1}, and several values of
} M. Since the bound is decreasing with increasing N and decreasing .

|CORR|, Figure 4.4 suggests that for T = 40w, N > 100, |coRR| < 1,

-1 < SNR, <10, .1 <y <1, and M = 1024, an error of less than 10-10
will result. For this choice of T, we have Ax = .05, which should
provide both acceptable resolution and error in approximating H(x)

| by ﬁ(xl) in (4.46). Figure 4.5 illustrates the numerical results for
parameter choices corresponding to those of Figure 4.3. A careful com-

| parison of Figures 4.3 and 4.5 reveals several discrepancies, indicating

that the numerical inversion techunique with its associated crror bound

is indeed worthwhile.




(a) N =100, y = 1, M = 1024

Figure 4.4 Approximate error bound vs. T
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Figure 4.5 Non-normal component of cdf
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Although both the Edgeworth approximation (4.22) and the numerical

inversion computation (4.46) are useful, their usefulness decreases when
considering the tails of the cdf F(x). Consequently, a "tight" bound

on the tails of F(x) would be desirable. The Markov inequality (4.59)
can, of course, be used, but the so-called Chernoff bound [17, pp. 118-122]
decreases exponentially, whereas (4.49) decreases only as eV, Also,

the distribution under consideration here is skewed (since K3 #0), a

property which is lost when using bounds such as (4.49).

Consider for A > O:
(=2

P{n > €} = [dF (x)
n

(4

.
=¢c ¢n -in,

for all X > 0, such that ¢n(-jk) exists. From the development of

2
(4.8) it is easily seen that ¢n(-jk) exists only for AZB < 1.

Similarly, for A < O:
€ o0

Pin « e} == J an(x) iI

-0 - 00

e)\(x - c)an(x)

(e

= e—>‘e ( exxan(x)

)

-0

=Ag "
= e ¢n(-3%).

for all A < 0 such that ¢n(jk) exists.
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Defining h(A) = log ¢”(~]A) (AZ.'*.2 < 1), we have ‘

Pin > e} e-Aa + h(})

A

,fOI‘ 0iA<1/B’ :
and

Pln<er< et RO gor -1/8 < A < 0. .

A

We now seek to minimize the quantity b(A) = exp{h(A) - e} with respect

to A. We have: ”

b'(A) = (h'(A) - €) b(A) =0
iff h'()) = ¢, where h'(A\) = ¢ will result in the minimum b(A) |
if

i) there exists a A such that h'()) = ¢ 1

and
ii) "(x) | > 0.
e=h'(})
We have:
B (M| 4 gyy= MDY [> O
e (A e=h' (A)
iff
()| >0 ,
e=h'()) o
5
and <
h"' (A | = ¢ PR J (x-c)ze“‘an(x) > 0,
e=h'(})

-00

implying that ¢ = h'()) does lead to the minimum b(A). For the problem

at hand,
N 2.2 61“3*3%‘3262A2 4
h(A) = "-2-108(1- 3"AT)Y +— 33
1-8%)
and (4.59)
(N+8,82 +38 8732 - 42> - 8 811"
] L
h'(a) = 2 2.2 :
a - 84\?%)
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i
The bounds of interest beccome i
- ‘ L}
P{n > h* (M)} < Ghi) = &l “2 for 0 < A < % (4.60)
and 1]
- 1]
P{n < k' (M)} < eh(k) M (A), for -% <A < 0. .
) We note that {h'(A): 0 < A < %} = {x: 0 < x < »} and
{h' (V) -% <A <0} ={x: -=<x<O0}. The bounds of (4.60) are I
{1lustrated in Figure 5.6 for |h'(A)| < 10, CORR =1,
Ne{2, 10, 100, 1000}, SNRie{.i, 1, 10}, and vy € {.1, 1}. Note that

the bounds of (4.60) are decreasing with | CORR| and that

P{n < e} = P{n > -c}| , (4.61)
-CORR CORR
and
P{n > e} = P{n < -e}| .
-CORR CORR
We now have a relatively complete characterization of the cdf Fn(x),
A
where n is the standardized r.v. n = ——?;—JE-. In order to use
b z

these results for the r.v. z, we note that

X =W,
Fz(x) = Fn< > ) .

z
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' Figure 4.6 Chernoff bounds for cdf tails
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Conclusion

In this report, we have studied two predistorted-replica
correlation receivers: The FLAC receiver and the ARSAC receiver. A
Doppler analysis was performed for each, the results of which indicate

that for signal time bandwidth products TW such that

1
e - 1l < om

the difference in sensitivity is not dramatic; however, for larger
time-bandwidth products the ARSAC receiver vastly outperforms the
FLAC receiver.

Sections II-C and III-C pointed out that the FLAC concept can
perform satisfactorily in a multiple user environment; whereas the
ARSAC concept will not.

Sections II-B and III-B dealt with discrete time structures for
the FLAC and the ARSAC systems, respectively. In fact, a digital
realization of the FLAC recciver can be made requiring only two
additions and one multiply per output sample. The output, Yy? for the

FLAC receiver is, from Section II-B:

L-1

y, ~LR __R ___,
n p=0 n-p n-L-p

b o Ro_L-
n+1p_'_1 n-p n-L-p

=R _p+1®i41 T Rianed) Y

indicating that if Hon ™ 0, and Rn =0 for all n < %, (5.2) is

equivalent to (5.1) foir all n = ¢, +1, 42,0,
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It is to be emphasized that the assumptions made about the channel
imply that there is no intersymbol interference, an assumption which ]
is certainly restrictive. For the known signal case, several authors |
have shown that the optimal structure is a matched filter followed by |{
a transversal filter [3]. It is conjectured here that similar per- 1
formance improvement can be obtained by following the predistorted

replica correlation recciver by a transversal filter. f
Finally, the noisec performance for the family of predistorted

replica correlation receivers was dealt with in Section IV. The

analysis there assumed that the noise component of the reczived process
was additive Gaussian noise, such that the samples of the received

process were uncorrclated.
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